468 research outputs found

    On the Applicability of Temperature and Precipitation Data from CMIP3 for China

    Get PDF
    Global Circulation Models (GCMs) contributed to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) and are widely used in global change research. This paper assesses the performance of the AR4 GCMs in simulating precipitation and temperature in China from 1960 to 1999 by comparison with observed data, using system bias (B), root-mean-square error (RMSE), Pearson correlation coefficient (R) and Nash-Sutcliffe model efficiency (E) metrics. Probability density functions (PDFs) are also fitted to the outputs of each model. It is shown that the performance of each GCM varies to different degrees across China. Based on the skill score derived from the four metrics, it is suggested that GCM 15 (ipsl_cm4) and GCM 3 (cccma_cgcm_t63) provide the best representations of temperature and precipitation, respectively, in terms of spatial distribution and trend over 10 years. The results also indicate that users should apply carefully the results of annual precipitation and annual temperature generated by AR4 GCMs in China due to poor performance. At a finer scale, the four metrics are also used to obtain best fit scores for ten river basins covering mainland China. Further research is proposed to improve the simulation accuracy of the AR4 GCMs regarding China

    Taylor Genetic Programming for Symbolic Regression

    Get PDF
    Genetic programming (GP) is a commonly used approach to solve symbolic regression (SR) problems. Compared with the machine learning or deep learning methods that depend on the pre-defined model and the training dataset for solving SR problems, GP is more focused on finding the solution in a search space. Although GP has good performance on large-scale benchmarks, it randomly transforms individuals to search results without taking advantage of the characteristics of the dataset. So, the search process of GP is usually slow, and the final results could be unstable. To guide GP by these characteristics, we propose a new method for SR, called Taylor genetic programming (TaylorGP). TaylorGP leverages a Taylor polynomial to approximate the symbolic equation that fits the dataset. It also utilizes the Taylor polynomial to extract the features of the symbolic equation: low order polynomial discrimination, variable separability, boundary, monotonic, and parity. GP is enhanced by these Taylor polynomial techniques. Experiments are conducted on three kinds of benchmarks: classical SR, machine learning, and physics. The experimental results show that TaylorGP not only has higher accuracy than the nine baseline methods, but also is faster in finding stable results

    PointOBB: Learning Oriented Object Detection via Single Point Supervision

    Full text link
    Single point-supervised object detection is gaining attention due to its cost-effectiveness. However, existing approaches focus on generating horizontal bounding boxes (HBBs) while ignoring oriented bounding boxes (OBBs) commonly used for objects in aerial images. This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection. PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view. Upon the original view, we leverage the resized and rot/flp views to build a scale augmentation module and an angle acquisition module, respectively. In the former module, a Scale-Sensitive Consistency (SSC) loss is designed to enhance the deep network's ability to perceive the object scale. For accurate object angle predictions, the latter module incorporates self-supervised learning to predict angles, which is associated with a scale-guided Dense-to-Sparse (DS) matching strategy for aggregating dense angles corresponding to sparse objects. The resized and rot/flp views are switched using a progressive multi-view switching strategy during training to achieve coupled optimization of scale and angle. Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance, and significantly outperforms potential point-supervised baselines.Comment: 11 pages,5 figures, 6 tables. Code: https://github.com/Luo-Z13/pointob

    Does Graph Distillation See Like Vision Dataset Counterpart?

    Full text link
    Training on large-scale graphs has achieved remarkable results in graph representation learning, but its cost and storage have attracted increasing concerns. Existing graph condensation methods primarily focus on optimizing the feature matrices of condensed graphs while overlooking the impact of the structure information from the original graphs. To investigate the impact of the structure information, we conduct analysis from the spectral domain and empirically identify substantial Laplacian Energy Distribution (LED) shifts in previous works. Such shifts lead to poor performance in cross-architecture generalization and specific tasks, including anomaly detection and link prediction. In this paper, we propose a novel Structure-broadcasting Graph Dataset Distillation (SGDD) scheme for broadcasting the original structure information to the generation of the synthetic one, which explicitly prevents overlooking the original structure information. Theoretically, the synthetic graphs by SGDD are expected to have smaller LED shifts than previous works, leading to superior performance in both cross-architecture settings and specific tasks. We validate the proposed SGDD across 9 datasets and achieve state-of-the-art results on all of them: for example, on the YelpChi dataset, our approach maintains 98.6% test accuracy of training on the original graph dataset with 1,000 times saving on the scale of the graph. Moreover, we empirically evaluate there exist 17.6% ~ 31.4% reductions in LED shift crossing 9 datasets. Extensive experiments and analysis verify the effectiveness and necessity of the proposed designs. The code is available in the GitHub repository: https://github.com/RingBDStack/SGDD.Comment: Accepted by NeurIPS 202

    Experimental measurement of the quantum geometric tensor using coupled qubits in diamond

    Full text link
    Geometry and topology are fundamental concepts, which underlie a wide range of fascinating physical phenomena such as topological states of matter and topological defects. In quantum mechanics, the geometry of quantum states is fully captured by the quantum geometric tensor. Using a qubit formed by an NV center in diamond, we perform the first experimental measurement of the complete quantum geometric tensor. Our approach builds on a strong connection between coherent Rabi oscillations upon parametric modulations and the quantum geometry of the underlying states. We then apply our method to a system of two interacting qubits, by exploiting the coupling between the NV center spin and a neighboring 13^{13}C nuclear spin. Our results establish coherent dynamical responses as a versatile probe for quantum geometry, and they pave the way for the detection of novel topological phenomena in solid state

    H2RBox-v2: Boosting HBox-supervised Oriented Object Detection via Symmetric Learning

    Full text link
    With the increasing demand for oriented object detection e.g. in autonomous driving and remote sensing, the oriented annotation has become a labor-intensive work. To make full use of existing horizontally annotated datasets and reduce the annotation cost, a weakly-supervised detector H2RBox for learning the rotated box (RBox) from the horizontal box (HBox) has been proposed and received great attention. This paper presents a new version, H2RBox-v2, to further bridge the gap between HBox-supervised and RBox-supervised oriented object detection. While exploiting axisymmetry via flipping and rotating consistencies is available through our theoretical analysis, H2RBox-v2, using a weakly-supervised branch similar to H2RBox, is embedded with a novel self-supervised branch that learns orientations from the symmetry inherent in the image of objects. Complemented by modules to cope with peripheral issues, e.g. angular periodicity, a stable and effective solution is achieved. To our knowledge, H2RBox-v2 is the first symmetry-supervised paradigm for oriented object detection. Compared to H2RBox, our method is less susceptible to low annotation quality and insufficient training data, which in such cases is expected to give a competitive performance much closer to fully-supervised oriented object detectors. Specifically, the performance comparison between H2RBox-v2 and Rotated FCOS on DOTA-v1.0/1.5/2.0 is 72.31%/64.76%/50.33% vs. 72.44%/64.53%/51.77%, 89.66% vs. 88.99% on HRSC, and 42.27% vs. 41.25% on FAIR1M.Comment: 13 pages, 4 figures, 7 tables, the source code is available at https://github.com/open-mmlab/mmrotat

    A Carbon Nanotube-based Hundred Watt-level Ka-band Backward Wave Oscillator

    Get PDF
    Carbon nanotube (CNT) cold-cathodes hold much promise in a variety of millimeter-wave and terahertz vacuum electronic radiation devices due to their inherent near instantaneous temporal turn-on and near-ideal ideal field electron emission performance. Here we report on the development of a CNT cold-cathode Ka -band backward-wave oscillator (BWO). Using a novel beam compression stage, theoretical studies, simulation results, and empirical findings collectively demonstrate that this device affords an unprecedentedly high output power of 230 W at a technologically important operating frequency of 33.65 GHz. The developed magnetic injection electron gun achieves a high emission current of 265.5 mA (emission current density of 188.3 mA/cm 2 ) and a high focused beam current density of 18.5 A/cm 2 , which our studies suggest, is essential to the BWOs high output power
    • …
    corecore